
UDC 539.3 

PLANE PRDBLEM OF THE THEORY OF ELASTICITY IN MULTIPLY- 
CONNECTED DOMAINS WITH CYCLIC AND MIRIboR SYMMETRY 

PMM Vol. 43, yo. 2, 19’79, pp. 371-374, 
V. N. MIKHAILOV 

(Moscow) 
(Received December 21. 1977) 

The first boundary value problem of the theory of elasticity is studied for the 

regions and loads posaessing not only the cyclic Cl, 21, but also the mirror sy- 
mmetry. The form of the integral Sherman - Lauricella equation is affected 

by the type of symmetry. 

1. Let a region D, in generalmultiply-connected, be defined on a plane with a 
rectangular z , Y -coordinate system. We shall consider the regions which have mirr- 

or symmetry with respect to the rays ‘p = nr / n (r = 0,1, . . ., 2~ - 1) of the polar 

Rrp -coordinate system. Obviously these regions will also have a rotational symmet- 

ry about the coordinate center by the angles ak = 2nk / n (k = I,29 . . .t n - 1). 

The region D is bounded by several closed contoun: Lo, Ll, . . ., L,, and the cont- 
our LO contains all the remaining contours. We denote the sum of all boundaries 

bY L. Known external loads are applied along these contours, and the loads possess 
the same symmetry as the region D. We assume that the principal vectors of the 

external loads applied to the contours L,(k = 0, 1, . . ., m) are equal to zero. 
As we know, [3,4] the above problem reduces that of finding two functions ‘p (z) 

and $ (e) of the complex variable z , single-valued in D , the functions satisfying 
the following conditions at the boundaries: 

~W+67T+IpO=f(t)+cj on+ (1.1) 
where f (t) is a function defined in terms of the external loads and Co, C,, . . ., C, 
are unknown complex constants one of which can be fixed by putting Co = 0. 

From the conditions of mirror symmetry about the x -axis follows 

cp(z)=cp), $(z)=Ip) (1. 2) 

The symmetry of rotation by the angle ak = 2nkln holds when [Z] 

q (2) = exp (iak) 9 (2 exp (- fq)), $ (2) = exp (- iak) $ (2 exp (- i&h.)) (1.3) 

Following Sherman [3] we shall seek the functions cp (z) and 1~: (z) in the form 

1 - 0 (qdt 
‘p(z)== t_-z a 

L 

(1.4) 

S{ ~(t)t+o(t)df 
t-z (1.5) 

L 

bj = i 
s 

{a(t)dS--o(l)dt}, j=i,...,m (1.6) 

Lj 
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Here w (t) is a function of the points of the contour and is to be determined, 22 
denote the points within the regions bounded by the contours Lj (f = 1, . . . , m), and 

the points are chosen such that for symmetrical contours the points have the same sy- 

mmetry, and bj are real constants which can be determined from the above formulas. 
Integration along the contour 4 is carried out in the anticlockwise direction and 
along the remaining contours in the clockwise direction. 

The expression (1.4) for ‘p (2) usually includes another term idelrtical with the 
last term of (1.5). The term has no significant meaning (see f5] ) and the solutioncan 
be sought in the form (1.4). However, for the problems possessing a symmetry it is 

important that Q, (z) is represented precisely by (1.4) since the furkz tion 0 (t) has, 
in this case, the same simple symmetry properties as the function cp (z), and the deri- 
vation of the integral equation for the symmetrical problems no longer presents any 

difficulties, in constrast to [1,2], where a different representation of cp (z) was used. 

The symmetry conditions (1.2) and (1.3) will hold, if the following relations hold: 

0 (t) = o(5), 0 (t) = CxP (iak) 0) (t exp (- hk)) (1.7) 

2. Let us denote by Pp3, p = 0, 1, . . . , M , the parts of the contours L,,* I,,, . 
. ‘ , L,, lying within the angle Cl < rp < n ! n, and let Pm denote a part of the out- 

ermost contour, Let Ppo* be a mirror reflection of Tr,,, in the z-axis, and Ppk 

or I.‘~~* the contour obtained by rotating Fpci or Pw* by the angle ak. Clearly, 

the boundary of the region D is a sum of the contours Tpk -I- rpe* with k varying 

from 0 to n-1. 
Using the above notation and (1,6), we can write (1. 1), after substituting into it 

(1.4) and (1.5), in the form 

c, = f (to), to 63 r,, 

where zpk denotes the point zj of (1.5) corresponding to the contour Tpk a By de- 

finition, zpk = 2~ sxP (iok). 
Let us change in the integrals along the contours I’PE, rPk* (k = 1, . . . ,. n - 1) 

the variable of integration Z = r exP (- &f. According to the second equation of 

(1.7) we have for t E rpk, t E rpk* , 0 (d = a (%) eXp (ia& This transforms the 

contour PPk into rpg and rPk* into T,*. Changing now the variable x in the 

integrals along the contours rpo** s = 3, o (r) -- oii = o (tf we find, that b* 

becomes t, but with the opposite direction. Taking this into account, we obtain 

to (4 exp (tak) d In Sk (t) - 
(2.2) 

a exp (tUk) d h Sk (6) -o(t) exp (- tak) d$k tt) i- 
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0 (f) a- iTqT) tit 
r, - zpo exp (k+) 1 - cz = f (44 

$r (t) = 
t exp WJJ - to 

f exp (- ia,) - f. (2.3) 

Let us determine Cr . If Pro is a closed contour, then according to Sherman 
we have 

cr = - 
s 

0 (f) as 

rl, 

Consider the case in which P10 is an open contour. Let Pro and Pro* form a clos- 
ed contour intersecting the 5 -axis. Then, using the condition of mirror symmetry ex- 

pressed by the first equation of (1.7), we obtain 

c, = - S [@ 0) + o(t)1 ds 
% 

Let the contour Pro touch the ray ‘p = rr / n. The condition of mirror symmetry 

with respect to this ray yields 

0 (t) = 0 (2 exp (2in / n)) exp (2in / n) 

and this enables us to write Cl in the form 

c,=_ l s[ 0 (t) + C@j exp 2i + ( )I 
ds 

r10 
Finally, we consider the case when plo represents a part of the closed contour enclos- 
ing the coordinate origin. Using the rotational symmetry by the angle akr we ob- 
tain n-1 

c, = - 2 {S o(t)w &Jds+ j own M,)dr) 

k-o 1’10 Q* 

But for n 2 2 we have 
n-1 

k=o 

Consequently, if a rotational symmetry by an angle smaller than 2n exists, then 
Cl = 0 for the contour in question. 

Denote by I’ the sum of all contours Pm, and introduce on P a piecewise 
constant function p (t): P (t) = p if t E ppo, i.e. y (t) assumes the value of the 

number of the contour containing the point t. Now we can write equation (2.2) in 
the form n-1 4 I. - I 

I ’ 0) (tJ + 2ni 3u exp (iuk) [co (t) d In & (t) - o(t)d In c;R (f)] - (2.4) 
I’ k-0 

exp (- $J [m 0) dtk (4 - 0 0) d4, (t)l - 
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2n[~(Odf-_W [fo_;,ex’&iak) +q_ ’ 
zl, exp (ia,) I1 - 

CI = f PO), to E: rrll, z = P (to), p = P (t), “p = +lJ 

where gk (t) is given by (2.3). 
Thus the function 0 (r) must satisfy equation (2.4) defined on the part I of 

the contour L of the region !J. The solvability of (2.4) follows from the solvabil- 
ity of the Sherman - Lauricella equation. It is true that in order to prove the unique- 
ness of the solution of the latter equation Sherman introduced into it another term 

[4] with an unknown imaginary multiplier b,+r In the presence of mirror symme- 
try however, this term vanishes by virtue of the first equation of (1.7). 

It should be noted that for the regions with cyclic symmetry only, equation (2.4) 

must contain an additional term as in [l, 21. But even then the function will satisfy 

the second equation of (1.7). 
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